=head1 NAME Imager::regmach - documents the register virtual machine used by Imager::transform2(). =head1 SYNOPSIS The register machine is a complete rewrite of the stack machine orginally used by Imager::transform(), written for use by Imager::transform2(). =head1 DESCRIPTION (This document might be a little incoherent.) The register machine is a fast implementation of a small instruction set designed for evaluating an arithmetic expression to produce a colour for an image. The machine takes as input: =over 4 =item instructions An array of instructions =item numeric registers An array of numeric registers. Some registers are initialized as literals. =item colour registers An array of colour registers. Currently these registers aren't initialized. =item input images An array of Imager i_img pointers. The getpn operators read pixels from these images. =back The instructions supplied each take up to 4 input numeric or colour registers with a single output numeric or colour register. The machine attempts to execute instructions as safely as possible, assuming that correct instructions have been provided, eg. the machine protects against divide by zero, but doesn't check register numbers for validity. The final instruction must be a 'ret' instruction, which returns the result ;) =head2 Adding new instructions To add a new instruction: =over 4 =item 1 Add a new opcode to the enumeration in regmach.h - make sure to add comment after the enum name giving the input registers (rX for numeric, pX for colour) that the instruction takes. These must be in the order that the instruction expects to take the. Put a letter (r or p) after -> to indicate the result type. =item 2 Add a case to regmach.c that executes the instruction. =item 3 make =back The makefile should rebuild the Regops.pm file, and your new instruction will be added as a function. If you want to add a single alternative instruction that might take different argument types (it must take the same number of parameters), create another instruction with that name followed by a p. The current expression parsers explicitly look for such instruction names. =head2 Future directions Conditional and non-conditional jumps to implement iteration. This will break the current optimizer in L (and the compilers for both expression compilers, for that matter.) Complex arithmetic (Addi suggested this one). This would most likely be a separate machine. Otherwise we'll have a very significant performance loss. =head1 WARNINGS If you feed bad 'machine code' to the register machine, you have a good chance of a SIGSEGV. =cut